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Information about the dissertation

I Based on 9 papers, referred to as Paper A-I.

I A section that is based on a paper consists of text from the paper unchanged
except for minor modifications.

I Contents are rearranged to clarify the relations between different papers and
parts of several papers have been omitted to avoid repetition and improve
cohesion.

I Two main topics:
I Optimizing the Vandermonde determinant on a surface
I Phenomenological modelling with power-exponential functions

I Approximation of electrostatic discharge currents
I Approximation of mortality rate curves

I Each slide has the corresponding section (or page) in the dissertation in the
header.
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Papers: Optimizing the Vandermonde determinant p. 13

Paper A. K. L., Jonas Österberg and Sergei Silvestrov.
Extreme points of the Vandermonde determinant on the sphere and some limits
involving the generalized Vandermonde determinant.
Paper B. K. L., Jonas Österberg and Sergei Silvestrov.
Optimization of the determinant of the Vandermonde matrix on the sphere and
related surfaces.
Paper C. Asaph Keikara Muhumuza, K. L., Jonas Österberg, Sergei Silvestrov,
John Magero Mango, Godwin Kakuba.
Extreme points of the Vandermonde determinant on surfaces implicitly determined
by a univariate polynomial.
Paper D. Asaph Keikara Muhumuza, K. L., Jonas Österberg, Sergei Silvestrov,
John Magero Mango, Godwin Kakuba.
Optimization of the Wishart joint eigenvalue probability density distribution based
on the Vandermonde determinant.
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Papers: Phenomenological modelling p. 13–14

Paper E. K. L., Milica Rančić, Vesna Javor, Sergei Silvestrov.
On some properties of the multi-peaked analytically extended function for
approximation of lightning discharge currents.
Paper F. K. L., Milica Rančić, Vesna Javor, Sergei Silvestrov.
Estimation of parameters for the multi-peaked AEF current functions.
Paper G. K. L., Milica Rančić, Vesna Javor, Sergei Silvestrov.
Electrostatic discharge currents representation using the analytically extended
function with p peaks by interpolation on a D-optimal design.

Paper H. K. L., Milica Rančić, Sergei Silvestrov.
Modelling mortality rates using power-exponential functions.
Paper I. Andromachi Boulougari, K. L., Milica Rančić, Sergei Silvestrov, Belinda
Straß, Samya Suleiman.
Application of a power-exponential function based model to mortality rates
forecasting.
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Structure of the dissertation p. 17–18

Curve fitting

Interpolation

Section 1.2.1–1.2.3

Least squares method

Section 1.2.3-1.2.5

D-optimal design

Section 1.4

Optimization of the

Vandermonde determinant

Section 1.1, 2.1–2.3

Phenomenological modelling with

power-exponential functions

Electromagnetic compatibility

Section 1.5

Lightning discharge

current modelling

Section 3.1–3.3

Evaluation of curve fit

Section 1.3

Mortality rate modelling

Section 1.6, 4.1–4.5

Defence of dissertation September 26, 2019 5 / 37



Introduction

Optimizing
the
Vandermonde
determinant

Vandermonde
matrices,
determinants and
applications

Method of Lagrange
multipliers

Extreme points on a
surface defined by a
univariate polynomial

Phenomeno-
logical
modelling

Modelling
electrostatic
discharges

Modelling
mortality rates

The Vandermonde matrix 1.1.1–1.1.2

I A Vandermonde matrix is an m × n matrix of the form

Vmn(x) =
[
x i−1
j

]m,n

i ,j
=


1 1 · · · 1
x1 x2 · · · xn

x21 x22 · · · x2n
...

...
. . .

...

xm−1
1 xm−1

2 · · · xm−1
n


where xi ∈ R, i = 1, . . . , n. If the matrix is square, n = m, the notation
Vn = Vnn will be used.

I Alexandre Théophile Vandermonde (1735–1796) who was a French lawyer,
violinist, chemist, politician, economist and (briefly) mathematician.

I The Vandermonde determinant, vn(x1, . . . , xn), is given by

vn(x) = det(Vn(x1, . . . , xn)) =
∏

1≤i<j≤n

(xj − xi ).
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Applications of the Vandermonde determinant 1.1.6–1.1.7, 2.3.7

I In a generalized Vandermonde matrix we allow any sequences of exponents.
There are many other generalizations e.g. Alternant matrix, Jacobian matrix,
Wronskian matrix, Bell matrix, Moore matrix.

I The Vandermonde determinant appears in many applications,
e.g. Lagrange interpolation, Fekete points and Coulomb gas system.

I Important examples of Coulomb gas systems are distributions of charged
particles, sphere packing and various types of systems in random matrix theory.

I For example: Wishart ensembles are random matrices whose eigenvalues have
a joint probability distribution given by

Pβ(λ) = Cβ,α
N

∏
i<j

|λi − λj |β
∏
i

λα−p
i exp

(
−1

2

N∑
i=1

λ2
i

)
where α = β

2m, p = 1 + β
2 (N − 1) and β is determined by the type of

elements in the matrix. It can be shown that maximizing Pβ(λ) is equivalent
to maximize vn on a sphere.
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Optimizing the Vandermonde determinant 2

I Here we will focus on the Vandermonde determinant, more specifically we
want examine its maximum and minimum values.

I The Vandermonde determinant is a homogeneous polynomial

vn(cx) =
∏

1≤i<j≤n

(cxj − cxi ) = c
n(n−1)

2 vn(x)

so it is clearly unbounded and there are no global maximum or minimum.

I If we constrain x to a bounded volume we can use the homogeneity to show
that the extreme points must lie on the surface of the volume.
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Method of Lagrange multipliers 2.1–2.3

I For f (x) with x ∈ {x ∈ Rn|g(x) = 0} then any x such that

∂f

∂xk
= λ

∂g

∂xk
, 1 ≤ k ≤ n.

will be stationary points of f .

I The partial derivatives of vn can be written
∂vn
∂xk

=
n∑

i=1
i ̸=k

vn(x)

xk − xi
, 1 ≤ k ≤ n.

I Note that
n∑

k=1

∂vn
∂xk

= 0.

I Combining the equality above and the method of Lagrange multipliers gives
that for any stationary point of vn

g(x) = 0 and
n∑

k=1

∂g

∂xk
= 0.
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Extreme points in 3D 2.1.1–2.1.5

Sphere Cylinder Rotated Ellipsoid
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Extreme points on a surface given by a polynomial 2.2, 2.3

I Find the extreme points of vn on a surface implicitly defined by

gR(x) =
n∑

i=1

R(xi ) = 0, where R(x) =
m∑
i=0

rix
i , ri ∈ R.

I Let (x1, . . . , xn) be the coordinates of a stationary point and define

f (x) =
n∏

i=1

(x − xi ) and then compare the expression for
f ′′(xj)

f ′(xj)
with the

equation system given by applying the method of Lagrange multipliers to our
optimization problem we get a differential equation

f ′′(x)− 2ρR ′(x)f ′(x)− P(x)f (x) = 0

where P(x) is a polynomial of degree m − 2.
I In some cases finding the coefficients of P(x) and solving the differential

equation is easier that solving the equation system given by Lagrange
multipliers directly.
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Extreme points as roots of orthogonal polynomials 2.2, 2.3.2

I With
n∑

i=1

(
1

2
x2i + r1xi + r0

)
= 0 the extreme points of vn are given by the roots of

f (x) = Hn

((
n − 1

2(r21 − 2r0)

) 1
2 (x + r1)

2

)
= n!

⌊ n
2⌋∑

i=0

(−1)i

i !

(
n − 1

2(r21 − 2r0)

) n−2i
2 (x + r1)

n−2i

(n − 2i)!

where Hn is the nth (physicist) Hermite polynomial.

I We can use some symmetries of the roots to visualize the results in n ≤ 7 dimensions.

n = 6 n = 7
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Extreme points on a sphere defined by a p-norm 2.3.3–2.3.5

I Extreme points of vn on a surface implicitly defined by
n∑

i=1

xpi = 1 with even n and p.

I Coefficient matching equations can be reduced to n−2
2 equations. For low dimensions

the resulting system can be solved.

I General expression unkown. The roots of f np gives the extreme points.

f 42 (x) = x4 − 1
2x

2 + 1
48 ,

f 44 (x) = x4 −
√
6
3 x2 + 1

12 ,

f 46 (x) = x4 − 1
4 (
√
33 + 1)

1
3 x2 + 1

96

(
9−

√
33
)
(
√
33 + 1)

2
3

f 48 (x) = x4 −
√
3
6 (30

√
5− 30)

1
4 x2 + 1

120

(√
5− 5

)√
30
√
5− 30

f 62 (x) = x6 − 1
2x

4 + 1
20x

2 − 1
1800

f 64 (x) = x6 −
√

50+20
√
5

10 x4 +
√
5

10 x
2 − (−4+2

√
5)
√

50+20
√
5

600

f 82 (x) = x8 − 1
2x

6 + 15
224x

4 − 15
6272x

2 + 15
1404928 ,

f 84 (x) = x8 −
√

140+42
√
6

14 x6 +
(

3
28 + 3

√
6

28

)
x4 −

(
−(140+42

√
6)

3
2

16464 + 29
√

140+42
√
6

2352

)
x2 − 3

3136 +
√
6

1568
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Phenomenological modelling 3, 4

I A phenomenological modelling is a model that can approximately describe a
phenomena without explaining the phenomena.

I Challenges in engineering
A Identify the problem

I Experiments, Analysis, Modelling, Experience, Simulation etc

B Understand and describe causes of problem
I Physics, Chemistry, Other suitable theory, etc

C Solve the problem
I Mathematics, Numerical methods, Design, Construction etc

D Ensure solution is practical
I Resource constraints, Safety, Noise, Heat, Environmental concerns etc

E Realize solution
I Manufacturing, Cost, Shipping, Distribution, Logistics etc

I Phenomenological modelling assists in achieving C and D when B is difficult.
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Phenomenological modelling with power-exponential functions 3.1, 4.3

I We will build phenomenological models from what we
call the power-exponential function

x(β; t) =
(
te1−t

)β
, 0 ≤ t.

I The phenomenological models will be constructed by
linear combinations of piecewise scaled and translated
power-exponential functions.

I Two applications
I We will model electrostatic discharges using

power-exponential functions with β > 0.
I We will model mortality rates using a linear

combination of a power-exponential function with
β = −1 and power-exponential functions with β > 0.
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Interpolation 1.2.1

I An interpolation problem is the
problem of finding a function that
generates a given set of points.

I Many different functions can be used
for interpolation.

I The Vandermonde matrix appears
when interpolating with polynomials.

I Similar approach can be used with
other sets of basis function.


1 x1 · · · xn−1

1

1 x2 · · · xn−1
2

...
...

. . .
...

1 xn · · · xn−1
n




a0
a1
...

an−1

 =


y1
y2
...
yn


I It is easy to construct an

interpolating polynomial but the
result can be unstable when
interpolating many points unless the
points are chosen carefully.
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Least squares fitting 1.2.3–1.2.5

I A least squares fitting does not generate the exact
points, instead the sum of the square of the

residuals,
n∑

i=1

(yi − f (β; xi ))
2, is minimized.

I Least squares fitting is useful when the data is noisy, i.e. the data points
{(xi , yi ), i = 1, . . . , n} are described by yi = f (β; xi ) + ϵi where f (β; x) is a
given function with parameters β and ϵi are normally distributed i.i.d. random
variables with E[ϵi ] = 0, then taking the maximum likelihood estimation of the
parameters is the same as find the least squares fit.

I If f (β; x) is a polynomial then the least squares fitting problem involves
rectangular Vandermonde matrices.
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EMC and ESD 1.5

I Electromagnetic compatibility (EMC) is the study and design of systems that
are not susceptible to disturbances from other systems and does not cause
interference with other systems or themselves.

I Important examples include:
I Communication equipment and standards that do not interrupt each other.
I Control systems that are resistant to outside influence.
I Clothing, tools or other equipment can generate charge imbalances or sparks.

I An electrostatic discharge (ESD) is a sudden flow of charge from one object to
another, often accompanied by an electrical spark.

I Most familiar examples of ESDs are probably
I lightning discharges,
I human-to-object discharges.

I Two approaches for phenomenological modelling
I Numerically solving a non-linear least squares problem.
I Interpolation on a D-optimal design.

Defence of dissertation September 26, 2019 18 / 37



Introduction

Optimizing
the
Vandermonde
determinant

Phenomeno-
logical
modelling

Modelling
electrostatic
discharges

Curve fitting using
MLSM

Interpolation on a
D-optimal design

Modelling
mortality rates

Electromagnetic disturbances 1.5

!

I Suppose we have an engineered component.
I This component is struck by lightning. What

electromagnetic phenomena can cause
disturbances?

1. The discharge current passing through the
component.

2. The component emitting electromagnetic
radiation as the current passes through it.

3. Emission from the lightning channel itself.
4. Discharge changes electric potential between

cloud and ground causing transient changes in
the electric field.

I Typically very difficult to observe and model.

I There are standards that describe typical
discharge currents and how components should
react to them.
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The p-peaked AEF 3.1.1

Let Imq ∈ R, tmq ∈ R, q = 1, 2, . . . , p, tm0 = 0 < tm1 < tm2 < . . . < tmp along with

ηq,k , βq,k ∈ R and 0 < nq ∈ Z for q = 1, 2, . . . , p + 1, k = 1, 2, . . . , nq such that

nq∑
k=1

ηq,k = 1.

The analytically extended function (AEF), i(t), with p peaks is defined as

i(t) =



(
q−1∑
k=1

Imk

)
+Imq

nq∑
k=1

ηq,kxq(t)
β2
q,k+1, tmq−1 ≤ t ≤ tmq , 1≤q≤p,(

p∑
k=1

Imk

) np+1∑
k=1

ηp+1,kxp+1(t)
β2
p+1,k , tmp ≤ t,

where xq(t) =
t − tmq−1

∆tmq

exp

(
tmq − t

∆tmq

)
, 1 ≤ q ≤ p,

xp+1(t) =
t

tmq

exp

(
1− t

tmq

)
and ∆tmq = tmq − tmq−1 .
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Examples of a 2-peak AEF 3.1.1

Figure: AEF (solid) and its derivative (dashed) with the same Imq and tmq .
(a) 4 < βq,k < 5, (b) 12 < βq,k < 13, (c) a mixture of large and small βq,k -parameters.

I We will use two approaches to fit the AEF to data.
I Least squares fitting using the Marquardt Least Squares Method (MLSM).
I Interpolation on a D-optimal design.
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Estimating parameters for the AEF systems using the MLSM 1.2.6, 3.2.4

Input:
b(r), λ(r) and v > 1

Compute S
(
λ(r)
)

ω = ω + 1 λ(r) ≪ 1 Compute S
(
λ(r)

v

)

S
(
λ(r)vω

)
≤ S (r)

ω = 1

S
(
λ(r)
)
≤ S (r) S

(
λ(r)

v

)
≤ S (r)

λ(r+1) = λ(r)vω λ(r+1) = λ(r) λ(r+1) = λ(r)

v

Output:
b(r+1) = b(r) + δ(r), δ(r)

YES

YES

NO

NO

YES

NONO

YES

The basic iteration step of the Marquardt
least-squares method.

Input: choose v and
initial values for b(0) and λ(0) r = 0

Find b(r+1) and δ(r)

using MLSM
Find h(r) using b(r)

together with extra relations

Termination condition
satisfied

r = r + 1

Output: b, h

YES

NO

Schematic description of the parameter
estimation algorithm.
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Fitting to a multi-peaked waveshape 3.2.6

AEF fitted to two waveshapes from the
IEC 62305-1 standard.

AEF fitted to measurements of a lightning
discharge hitting a skyscraper.
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Optimal experiment design 1.4

I We will there try another approach with the goal of getting a good and
reliable approximation using only a few carefully chosen data points.

I Finding the least squares fitting is equivalent to taking the maximum-likelihood
estimation of the parameters that specify the fitted function.

I Thus the result of the fitting is also sensitive to noise in the data.

I The independent coordinates for the data, {xi , i = 1, . . . , n} are called a
design and choosing the design that minimizes the variance of the values
predicted by the regression model is called G -optimality.

I The design that minimizes the variance of the parameters of the regression
model is called D-optimality.

I The Kiefer–Wolfowitz equivalence theorem says that for a typical linear
regression model there exist a D-optimal design which is also G -optimal.
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D-optimal experiment design 1.3.4

I A design ξ is said to be D-optimal if it maximizes the determinant of the

Fisher information matrix M(β) = −EX

[
∂2

∂βi∂βj
ln(f (β(ξ);X ))

]n,n
1,1

.

I For an interpolating polynomial regression problem the Fisher information
matrix is given by

M(β) =


1 1 · · · 1
x1 x2 · · · xn
...

...
. . .

...

xn−1
1 xn−1

2 · · · xn−1
n



1 x1 · · · xn−1

1

1 x2 · · · xn−1
2

...
...

. . .
...

1 xn · · · xn−1
n


and thus by the Cauchy–Binet formula det(M(β)) = vn(x)2.

I Thus finding a D-optimal design for an interpolating polynomial regression
problem is equivalent to optimizing the determinant of the Vandermonde
matrix in some volume given by the set of possible designs.
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Finding a D-optimal on an interval for the AEF 3.3.1–3.3.3

I Consider the AEF between two peaks, i(t) =
n∑

m=1

ηmt
βmeβm(1−t).

I Set βm =
k +m − 1

c
and z(t) = (te1−t)

1
c then i(t) =

n∑
m=1

ηmz(t)
k+m−1.

I If we have n sample points, tm, m = 1, . . . , n, then the Fisher information
matrix is M = U⊤U where

U =

 z(t1)
k . . . z(tn)

k

...
. . .

...
z(t1)

k+n−1 . . . z(tn)
k+n−1

 .

I U is a generalized Vandermonde matrix and with zi = z(ti ) it has determinant

det(U) =

(
n∏

k=1

zk

) ∏
1≤i<j≤n

(zj − zi )

 un(k ; z1, . . . , zn).
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D-Optimal interpolation on the rising part 3.3.2–3.3.3

I This determinant can be maximized using a technique similar to the one
described previously.

I The determinant

un(k ; z1, . . . , zn) =

(
n∏

i=1

zki

) ∏
1≤i<j≤n

(zj − zi )


is maximized or minimized on the cube [0, 1]n when z1 < . . . < zn−1 are roots
of the Jacobi polynomial

P
(2k−1,0)
n−1 (1− 2z) =

(2k)n−1

(n − 1)!

n−1∑
i=0

(−1)n
(
n − 1

i

)
(2k + n)i

(2k)i
z i

and zn = 1, or some permutation thereof. Here ab is the rising factorial
ab = a(a+ 1) · · · (a+ b − 1).

I With some modification the same technique also works on the decaying part.
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Models based on measured data 3.3.5–3.3.7
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Results of fitting an AEF with 13 peaks and two terms in each interval to lightning
discharge data from Mount Säntis in Switzerland.
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Mortality rates 1.6, 4.1

I Survival function is defined as

Sx(∆x) = Pr[Tx > ∆x ].

I Mortality rate is defined as

µ(x) = lim
dx→0+

Pr[T0 > x |T0 ≤ x + dx ]

Pr[T0 > x ]
.

I Sx and µ(x) relate to each other

Sx(∆x) = exp

(
−
∫ x+∆x

x
µ(t) dt

)
.

I t current year, dx deaths, Lx living
population, central mortality rate is
mx ,t =

dx
Lx

and assume mx ,t ≈ µ(x).
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Mortality rate models I 4.1–4.2

Gompertz–Makeham µ(x) = a+ becx

Weibull µ(x) =
a

b

(x
b

)a−1

Logistic µ(x) =
aebx

1 +
ac

b
(ebx − 1)

Modified Perks µ(x) =
a

1 + eb−cx
+ d

Gompertz inverse Gaussian µ(x) =
ea−bx

√
1 + e−c+bx

Double Geometric µ(x) = a+ b1b
x
2 + c1c

x
2

Thiele µ(x) = a1e
−b1x + a2e

−b2
(x−c)2

2 + a3e
b3x

Heligman–Pollard 1 µ(x) = a
(x+a2)a3
1 + b1e

−b2 ln
(

x
b3

)2

+ c1c
x
2

Heligman–Pollard 2 µ(x) = a
(x+a2)a3
1 + b1e

−b2 ln
(

x
b3

)2

+
c1c

x
2

1 + c1cx2

Heligman–Pollard 3 µ(x) = a
(x+a2)a3
1 + b1e

−b2 ln
(

x
b3

)2

+
c1c

x
2

1 + c3c1cx2

Heligman–Pollard 4 µ(x) = a
(x+a2)a3
1 + b1e

−b2 ln
(

x
b3

)2

+
c1c

xc3
2

1 + c1cx
c3

2
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Mortality rate models II 1.6, 4.1–4.2

Hannerz µ(x) =
f (x)

1 + F (x)
with f (x) = α

g1(x)e
G1(x)

(1 + eG1(x))2
+ (1− α)

g2(x)e
G2(x)

(1 + eG2(x))2
,

F (x) = α
eG1(x)

1 + eG1(x)
+ (1− α)

eG2(x)

1 + eG2(x)
,

g1(x) =
a1
x2

+ a2x + a3e
cx , G1(x) = a0 −

a1
x

+
a2x

2

2
+

a3
c
ecx ,

g2(x) =
a5
x2

+ a2x + a3e
cx and G2(x) = a4 −

a5
x

+
a2x

2

2
+

a3
c
ecx

First Time Exit Model: SKI-6

µ(x) =
g(x)∫ ∞

x
g(t) dt

with g(x) = k√
x3

exp
(
−H2

x
2x

)
, H(x) = a1 + ax4 − b

√
x + lx2 − cx3

First Time Exit Model: Fractional 1st order approximation

µ(x) =
g(x)∫ ∞

x
g(t) dt

where g(x) =
2|l + (c − 1)(bx)c |

σ
√
2πx3

exp

(
−−(l − (bx)c)2

2σ2x

)
First Time Exit Model: Fractional 2nd order approximation

µ(x) =
g(x)∫ ∞

x
g(t) dt

where g(x) =
2

σ
√
2πx

(
2|l + (c − 1)(bx)c |

σ
√
2πx

+ k
c(c − 1)(bx)c

2|l + (c − 1)(bx)c |

)
exp

(
−−(l − (bx)c)2

2σ2x

)
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Models based on power-exponential functions 4.3

Power-exponential

µ(x) =
c1

xe−c2x
+ a1

(
xe−a2x

)a3
Split power-exponential

µ(x) =
c̃

xe−c2x
+ a1

(
xe−a2x

)ã
+ θ

(
x − 1

c2

)
· c2 · e · (c1 − c3) where

c̃ =

{
c1, x ≤ 1

c2

c3, x > 1
c2

, ã =

{
a3, x ≤ 1

a2

a4, x > 1
a2

, θ(x) =

{
0, x ≤ 0

1, x > 0
.

Adjusted power-exponential

µ(x) = c1

(
ec2x

c2x

)c̃

+ a1 (xe
−a2x)

ã
where c̃ =

{
c3, x ≤ 1

c2
,

c4, x > 1
c2
,
and ã =

{
a3, x ≤ 1

a2
,

a4, x > 1
a2
.
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Comparing models with the AIC 1.3.3, 4.4.1

I When comparing the different models we need to take into account that the
models have different numbers of parameters.

I remember my friend Johnny von Neumann used to say,
’with four parameters I can fit an elephant,

and with five I can make him wiggle his trunk’.
- Freeman Dyson, quoting Enrico Fermi

I A common way to do this is to use Akaike’s Information Criterion (AIC).

I Let f be a model of some data, y , with k estimated parameters and let L̂(f |y)
be the maximum value of the likelihood function for the model. Then the AIC
is given by

AIC(f |y) = 2(k + 1)− 2 log
(
L̂(f |y)

)
.

I The previously mentioned mortality rate models were fitted to data from the
seven countries and the AIC was computed for each year.
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Model fit comparison 4.4.2
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Forecasting mortality rates 1.6.1

I The Lee–Carter method is based on the assumption that central mortality
rates can be fairly accurately approximated by

ln(mx ,t) = ax + bxkt + εx ,t ,

where ax , bx and kt are computed from historical central mortality rate.

I Mortality rates are forecasted by assuming that future kt follow a linear trend.

I Since the Lee–Carter methods uses the logarithm of central mortality rate we
can use the previously fitted models to generate corresponding mortality rates
and see how this affects the forecast.

I To compare the different forecasts we do two things
I Estimate the variance of the drift term εx,t to compare how well the mortality

rates generated by the models match the assumptions of the Lee–Carter model.
I Estimate the standard error of the forecasted mortality indices to compare how

reliable the future forecasts are believed to be.
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Model forecast comparison 4.5

0 20 40 60 80 100

ln
(μ

)
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0
Original data

Central mortality rate 2000.....
Central mortality rate 2010.....
Forecasted mortality rate 2010

age (years)

age (years)
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ln
(μ

)
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0

Lower 95% confidence interval
Upper 95% confidence interval

Power-exponential

Estimated Country
variance of ϵt USA Canada Switzerland Japan Taiwan Australia

Measured data 0.111 0.123 0.123 0.143 0.113 0.0607
Logistic 0.124 0.131 0.140 0.154 0.125 0.0704
Modified Perks 0.122 0.128 0.132 0.149 0.118 0.0695
Power-exponential 0.123 0.130 0.129 0.149 0.141 0.0615
Split power-exp. 0.115 0.125 0.120 0.143 0.135 0.0602
HP4 0.116 0.134 0.128 0.142 0.120 0.0647

Standard Country
error estimate USA Canada Switzerland Japan Taiwan Australia

Measured data 0.151 0.199 0.398 0.244 0.299 0.209
Logistic 0.158 0.201 0.345 0.239 0.277 0.238
Modified Perks 0.160 0.204 0.371 0.247 0.294 0.243
Power-exponential 0.157 0.210 0.359 0.235 0.308 0.226
Split power-exp. 0.156 0.209 0.385 0.244 0.297 0.222
HP4 0.152 0.209 0.356 0.245 0.298 0.216
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Thank you for your attention!
Questions?
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